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1. Introduction 
 
Today, half a century after the invention of the 

quadrupole radiofrequency (rf) trap, also known as the 
Paul trap [1], and approximately seven decades after the 
invention of the Penning trap [2], ion traps are far from 
becoming obsolete. Such longevity is largely due to their 
ability to confine charged particles to small volumes in 
well controlled fields. Such traps are highly sensitive 
devices since they allow single ions to be stored and 
detected. Ions confinement for long periods of time is the 
key to high precision in particular if frequencies are to be 
measured. In our days, ion traps are used in analytical 
chemistry, trace analysis, molecular and cluster physics, 
the physics of non-neutral plasmas, metrology, atomic 
spectroscopy, high-precision mass spectrometry on stable 
or unstable isotopes, and for ion beam manipulation. 

Over the past two decades, higher order 
radiofrequency traps (like octupole [3] or hexapole [4]), 
unusual designs of the Paul trap [5], linear traps [6], and 
other electrode setups whose potential contains two or 
more multipole terms, have been intensively investigated 
in order to design charged-particle traps for high precision 
spectroscopy, frequency standards and for investigations 
in quantum optics [7]. 

The motion stability problem for the rf traps is the key 
problem of such a research. In a Paul trap the motion of 
the particle is described by linear, uncoupled, and 
explicitly time-dependent equations of motion (Mathieu 
equations). While for such traps the Floquet theory 
completely solves the stability problem for, in the case of 
higher order rf traps the stability problem is far from being 
solved. The reason of this state of facts resides in the 
natural complexity of such problems. The involved 
equations of motions are nonlinear, non-autonomous, 
spatial, and temporally coupled. Specifically, the temporal 
coupling appears from their common dependence on time. 
This coupling is scarcely, or even not at all discussed in 
literature. In the case of 2D motions in a Paul trap for 
instance, the coupling is responsible for the specific form 

(a rectangle with missing corners) of the outer boundary of 
the area covered by the particle motion. 

There are many attempts to overcome these 
difficulties. Most of them are based on both experimental 
and theoretical arguments. In this area there are only few 
contributions that help understanding the relevant features 
of such motions. One of them refers to the so called 
adiabatic approximation [4, 8]. In the rf trap domain, the 
adiabatic approximation is based on an older method, first 
introduced by Kapitsa [9]. This method allows the 
determination of the effective potential function that gives 
a hint about the reason of why such devices can confine 
charged particles. When the effective potential is derived 
only from the AC component of the driving field, it is 
called pseudopotential function [8]. It also allows the 
introduction of two major terms: macro- and micromotion, 
respectively. In this model, a charged particle, moving into 
a non-uniform, rapidly time-varying field, experiences a 
net force whose direction is toward regions of weaker 
field. 

Its trajectory can be thought of as being the 
superposition of two motions: one of large amplitude and 
low frequency as compared to the frequency of the driving 
field - macromotion (also called secular motion), and 
another one of small amplitude and synchronous to the 
driving field - the micromotion. 

The effective potential function is useful in 
determining the direction of this net force. When 
designing new rf traps, or new ion guides, the 
pseudopotential function is a very useful instrument to 
find, even in the incipient stage of trap design, if the 
electrode setup is able, or not, to accommodate confined 
motions. To understand the known features described 
below when characterizing the single ion motion into a 
nonlinear rf trap, some concepts in the domain are defined. 
For all rf (2n-pole) traps it is useful to define a parameter 

 that is proportional to , where  is a 
representative dimension for the trap (customarily, half the 
inner distance between endcaps),  and  represent the 
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frequency and the amplitude of the driving field, while  
and  are the mass and the charge of the ion, respectively. 

A list of some known facts, or generally accepted 
features concerning the motion stability in rf traps, is given 
below: 

(i) Though there is no theoretical proof yet, the 
existence of stable motions has been generally accepted in 
vicinity of the trap center [4, 10].  

(ii) Generally, the larger the kinetic energy of an ion, 
the larger the spatial region covered by its motion. This is 
not true for motions that occupy different regions of the 
trap. For instance, two ions launched from the center of a 
hexapole rf trap, with the same kinetic energy, the first one 
along the z-axis and the second one along the  line, 
have distinct ratio of their amplitudes. The elongation of 
the ion motion in the second case is larger. 

(iii) The maximum kinetic energy of the stable 
motions decreases with  [3, 4].  

(iv) For given kinetic energy, the dimensions of the 
region covered by stable motions decreases with  [4]. 

(v) Excepting some particular periodic motions, the 
single ion 3D motion exhibits chaotic dynamics. This is 
also true even for simple motions like rectilinear motions. 

(vi) Generally, the chaotic feature is not related to the 
spatial stability, since chaotic stable motions also exist. 

To our knowledge, the influence of the DC 
component on the dynamics in higher-order rf trap has 
been scarcely studied so far. The only available 
information states that, unlike the behavior in a Paul trap, 
in the octupole rf trap the presence of a DC potential is 
generally proved to deteriorate the trap stability [3]. 
 

 
2. The hexapole rf trap 
 
A hexapole rf trap is an electronic device whose 

confining potential is shaped by four electrodes having 
axial symmetry: two rings and two endcaps (Fig. 1). 

 

 
Fig.1. Electrode structure of the hexapole rf trap. 

 
The ideal potential that this electrode geometry has to 

approach is given by 
 

         (1) 

Generally, the electrode design of a 2n-order rf trap 
should approximate the three-dimensional potential [3, 4]. 
 

  (2) 
 
where  denote the usual spherical coordinates and 

 is the Legendre polynomial of  order. Customarily, the 
ideal surfaces of the electrodes can be determined by 
solving the equations 
 

  (3) 
 

In the hexapole rf trap case, the design constrains (3) 
introduces a relation between the minimum radius of the 
ring electrode  and the half of the inner distance between 
endcaps  expressed by . Such a device 
becomes a rf trap when  includes a radiofrequency 
component which can be written as 
 

  (4) 
 
where , , and  denote the DC, AC voltages 
applied between adjacent electrodes, and the driving 
frequency, respectively. 

The equations describing the motion of a particle of 
mass  and charge  into a hexapole rf trap read 

 
 

                              (5) 
 

 
where . One of the simplest forms 
of the equations of motion is given by 

 
 

                       (6) 
 

 
where the new spatial coordinates are related to the old 
ones by , and the time-
scale is chosen such as . The parameter  
represents the ratio  of the DC to AC components of 
the confining electric field , while the 
parameter  is the  parameter of the 
Mathieu equation governing the motion along the  axis in 
a Paul trap. 

Of course, the new form preserves all the information 
about the motion stability in a hexapole trap [4]. Notice 
that an ion belongs to the inner space of the trap if 

 |which, in our dimensionless 
variables, reads as . 

It should be noted here that equation (6) reveals a 
single parameter, , through which particle motion can be 
controlled. Therefore  becomes the only parameter by 
which we can influence the stability of motion in the 
hexapole rf trap. 

Aside from this parameter, the initial conditions only 
remain to determine the stability of the motion, this feature 
being characteristic to all nonlinear rf trap. 
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3. The effective potential derived by Kapitsa  
     method 
 
This method, also known as adiabatic approximation, 

originally proposed by Kapitsa [9], and developed by 
Landau [11], Dehmelt [8], and others, assumes that the 
motion of the particle might be decomposed into a slow 
component  having a large amplitude and low 
frequency as compared to the fast motion  driven 
by the rf field. In mathematical form, this means 

 
  (7) 

 
The fast motion is considered as having a zero 

average over a period of the driving voltage, that is 
. More precisely, in this paper we used the 

running average , where  
represents the period over which the average is done. 

For the sake of generality, we used the slow and fast 
terms, instead of the corresponding Dehmelt terms, 
macromotion and micromotion, widely used in the rf trap 
literature. 

Following the Kapitsa method, the following 
equations for the slow motion are derived 
 

 
  (8) 

 
 

It is easy to notice that (8) could be rewritten in a 
more compact form 

 
  (9) 
 

where . The dynamic potential 
 represents the 

dimensionless form of the Dehmelt pseudopotential, while 
the potential function  
corresponds to the static potential of the hexapole trap. 
Indeed, the pseudopotential function of a multipole rf trap 
is, by definition, [3, 8]. 

 
  (10) 
 

which, in the case of the hexapole rf trap, becomes 
 

  (11) 
 

On the other hand, the static potential of the hexapole 
trap could be written as 

 
  (12) 
 
It is interesting to notice that the effective potential 

function  has an absolute minimum on a 
circle of radius  that belongs to the  plane, a 
relative minimum on the z-axis at , and a minimax 

at the origin. If we express  in  coordinates it is 
easy to see that  at the absolute 
minimum, and  at the relative 
minimum. 

In the real space, this means that when including the 
DC component, the confinement center moves from origin 
either to a point belonging to a circle of radius  
from the plane , or to the point 

 on the z-axis. It should be emphasized 
that this circle belongs to the conic  that is 
the same conic in which rectilinear trajectories are possible 
in the hexapole trap [4]. Likewise, the relative minimum 
belongs to the z-axis on which rectilinear motions are also 
possible. 

One can imagine the trap center as a mountain pass 
between three valleys. The bottom of the upper valley lies 
on the z-axis, while the deeper ones extend along the 

 lines. 
A similar analysis shows that in the case of the 

octupole trap the confinement center splits into two 
circles, one above and the second one below the  
plane. We did not fail to notice that this splitting (in the 
octupole case) could cause the deterioration of the trap 
stability as the experiment showed [3]. 

 
 
4. Motion stability for rectilinear motions 
 
The existence of these rectilinear motions in the 2n-

pole traps have been proven in [4, 12]. In a plane passing 
through the symmetry axis, there are n such motions, one 
of them being the axis itself. Their study is important for 
the following reasons: a) all these motions are described 
by the same equation; b) the minima of the effective 
potential for 2D motions belong to the locus of these 
rectilinear motions; c) the most distanced point from the 
trap center of all motions with the same average kinetic 
energy, measured in the vicinity of the trap center, belongs 
to, or is approximately one of the rectilinear motions. 

Theoretical predictions. In this section we focus on 
the rectilinear motion along the z-axis only given by 

 
  (13) 
 

in dimensionless coordinates. 
For this motion the equation of the slow motion reads 
 
  (14) 
 
Any numerical analysis should be verified before we 

can trust it. To this end, in the classical physics involved 
here, it is a good idea to look for some invariants. 
Fortunately, this motion has some (the well-known one  
the projection on the z-axis of the angular momentum  is 
useless for rectilinear motions), but only for the slow 
motion introduced by the adiabatic approximation: 

(1) For , the product of the amplitude  and the 
period  of the slow motion is conserved 
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  (15) 
 
The fact that the product satisfies  is a 

direct consequence of the similitude principle [11]. This 
principle applies to cases where the force is derived from 
homogeneous potentials. A hint about how this principle 
works is given below. Let there be two distinct motions 
described by 

 
  (16) 
 
Let there A1, A2 be their amplitudes and T1, T2 be their 

periods, respectively. Let us consider a change of the 
variables ,  for the first one, and 

,  for the second one. In the new 
coordinates, the first motion has an amplitude  and 
a period , while the amplitude and the period of the 
second one are S2=1 and , respectively. Now, the two 
motions are described by the same equation 

, and since they have the same amplitude, 
in fact, we deal with a unique motion. Consequently, the 
two periods should be equal: . As the two 
amplitudes or periods are arbitrarily chosen, it follows that 
generally  (QED). The number in equation 
(15) approximates the period of a motion whose amplitude 
is 1. Indeed . The period  might 
be computed by integrating twice equation (16). A formula 
that speculates the symmetry of this motion and allows the 
evaluation of this invariant is 

 
  (17) 

 
(2) Another invariant of equation (14) is 
 
  (18) 
 

where  may acquire the significance of total energy in 
our dimensionless coordinates. 

Denoting the lower, upper positions with , , 
and maximum velocity of the slow motion with , the 

 constant could be rewritten as 
 

    (19) 
 
The energetic invariant in Eq. (19) can then be 

generalized to the 3D case 
 

         (20) 
 

where  is the kinetic energy ,  is 
the kinetic energy that can be reduced to zero when the 
particle lies at the bottom of the absolute minimum of , 
and  is kinetic energy that can be reduced to zero when 
the particle lies at the bottom of the relative minimum of 

. Since in this section we deal with the motion along the 
z-axis, the minimum of the  in this case is . This 

explains the term  in the right hand side of equation 
(19). 

Generally, for all values of , the period of the slow 
motion can be obtained by integrating equation (14) twice 

 
  (21) 

where , and . The 
relative angular frequency  is defined as the ratio 

 of the secular frequency  to the driving 
frequency . 

Notice that  depends on  and  only, since the 
limits of the integral depend on these parameters. Indeed, 
for any values of the pair , equation (18) has only 
two real roots:  and . 

 
 
5. Numeric results for rectilinear motion 
 
The goal of this section is to find how far we can trust 

the adiabatic approximation. In this sense, we asked the 
following question: If it is good, to what extent is it good? 
If it is wrong, why, and where does it fail? Historically, 
this study comes last being imposed by some failures of 
the adiabatic approximation noticed in the 2D and 3D 
analyses. The most important seems to be a shift of the 
positions of the extrema of the effective potential from the 
predicted position toward the exterior of the trap. 
Anticipating, this shift increases with . Another feature 
that could be important for applications is the non-
monotonic dependence of the slow frequency on the 
particle energy. A positive shift of the  frequency, as 
compared to the frequency predicted by equation (21), is 
reported, also. 

To this goal, equation (13) has been integrated using 
different values of the  parameter, in the range 0 to 0.17. 
In all integrated motions, the particle was released at a 
given , with zero velocity, and at the angular phase 

 of the driving field. Apparently, these initial 
conditions are not sufficient for a complete analysis. But a 
more detailed study [10], shows that in the main stability 
domain which is positioned near the bottom of the 
effective potential, these initial conditions allow an 
efficient exploration of the region. For the sake of 
simplicity, we chose to sort the maximum values of the 
velocity , which are in direct relation 
with the maximum kinetic energy of the particle, and it is a 
good parameter for displaying most of the curves involved 
here. In order to derive the amplitude of the motion, the 
extrema  and  were sorted also. 

Notice that the invariants we verified refer to the slow 
motion that is only part of the total motion, the other one 
being the fast component. Their numerical separation 
proves to be very fruitful in deriving the results of this 
section. 

To avoid some possible confusion, also notice that all 
the results in this section were derived from the numeric 
integration of equation (13) only.  
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We did not attempt tointegrate equation (14). We have 
only speculated its properties. 

The  invariant. For motions of low amplitude, 
where the adiabatic approximation works well, one can 
expect that the numerical value provided by equation (15) 
will be retrieved again. At this point, another problem 
arose: How to compute the quantities  and  from the 
available data? To this goal, two numerical algorithms 
have been developed: one for the amplitude, and the 
second one for the frequency of the slow motion. 

Particularly, the algorithm for the amplitude allows a 
fair estimation of the limits  and  of the slow 
motion. Concerning the calculation of the frequency of the 
slow motion, we have developed an algorithm described in 
[10]. 

The numerical results show that for  
 

                (22) 
 
The first term on the right hand of above relation is 

close enough to the value predicted by equation (17). The 
discrepancy comes from the following known facts: (a) the 
better the frequency estimation, the longer the time of 
measurement as compared to the period of implicated 
motion; (b) the longer the time of integration, the larger 
the numeric errors; (c) accordingly to equation (17) that 
works in the adiabatic approximation, low amplitudes 
imply high periods of the slow motion. This way, the time 
of integration was chosen at the end of an optimal 
decision. 

Maximum elongations. The maximum elongations 
 and  are easily sorted using the integrated 

trajectories. Fig. 2 displays their dependence on 
. As for the elongation,  and  were 

computed using the amplitude algorithm aforementioned. 
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Fig. 2. Dependence of  and versus for some values of the 
c  parameter.  The  solid  lines  represent  the lower limit, 

while the dotted ones are for the upper limit. 
 

Fig. 2 reveals a common particularity of these 
functions: in the vicinity of some point, every motion takes 
the smallest value of the amplitude. Surprisingly, as 
motions with  prove it, near this minimum there 
are stable motions at large values of the kinetic energy as 
compared to the  case. 

The numerical analysis shows that the maximum 
elongations of the slow motion  and  are related 
to the maximum elongations  and  by the smooth 
functions given below. Concerning , the  case 
looks like an accident case, and has been separately 
treated, while, for , the case  has been 
treated likewise. 

 
1. For : 

. 
2. For : 
 

. 
3. For : 

. 
4. For : 
 

. 
 
The residual motion. The numeric analysis focuses 

now on the zones of smallest amplitude. At the bottom of 
the effective potential function, the motion of the particle 
contains only the fast motion, this kind of motion is 
referred to as residual motion. At this limit, both  and 

 take a common value . This value represents the 
true position of the minimum of the effective potential 
function  could be expressed in terms of  as 

 

,             (23) 
 

while the slow frequency is given by  
 
 . (24) 
 
All these formulae agree well with the available data 

in 1% in the range of  from 0 to 0.17. 
 
The energetic invariant. If the  invariant exists 

then it is possible to compute  from a function like 
, where . 
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Fig. 3. Plots of the and  functions versus, x at seven 
values of : 0, 0.025, 0.05, 0.08, 0.1, 0.125, and 0.15. 
The function  is represented with solid lines, while the 
squared  symbols  belong  to.  The arrow marked with (*)  
            indicates the direction in which c increases. 
 
In order to verify both the existence of the  

invariant and to establish a method for computing , 
the functions  and  were 
represented on the same plot for a couple of  values. The 
idea of substituting  with  proves to be excellent, 
since all the graphics of  and  
in Fig. 3 come close together for all values of . 

The excellent overlapping of the two functions 
demonstrates the existence of an energetic invariant of the 
following form 

 
            (25) 

 
where  represents the position of the minimum of the 
effective potential given by equation (23). The discrepancy 
between (18) and (25) becomes important for large values 
of  in the studied range. 

Due to the excellent verification of the energetic 
invariant (25), the formula  

 
  (26)  

 
was used when constructing the plots in Fig. 3. It qualifies 
as a good formula for  that otherwise would be 
difficult to estimate. 

The slow frequency. As opposed to the  case, 
for  the frequency  has a nonmonotonic 
dependence on , as Fig. 4 shows. 
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Fig. 4. Dependence of the slow frequency versus. The 
curved line marked with asterisk (*) represents the limit 
of   all    such     dependencies.   In    its    points,   the ion  
                     experiences only residual motion. 

The values of the dotted function in Fig. 4 have been 
computed using the aforementioned frequency algorithm. 
The two V-shaped lines from the same figure are 
calculated functions using the formula 

 
 ,                      (27) 

 
where the value of T resulted from equation (21).  

Near such a minimum (of a V-shaped line), the ion is 
moving towards  with very slow velocity. Such 
motions show a pronounced chaotic dynamics. 

There were some difficulties in calculating the 
improper integral in equation (21), but we do not believe 
that they affected the observed positive shift. 

 
 
6. Motion stability for 3D motions.  
 
In order to take into account the effect of the 

centrifugal force, we have considered the dimensionless 
Hamiltonian in cylindrical coordinates for a single charged 
particle moving into a hexapole trap 

 

               (28)  
 

that yields to the equations of motion 
 

, 
 , (29) 

 
 

where the dimensionless spatial coordinates are related to 
the usual cylindrical coordinates  by 

, the time scale being , 
and . In the last relation,  is the 
angular momentum of the particle with respect to the z-
axis. 

The dynamic and static potential functions are now 
 

 
 .  (30) 
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minimum points and the hollow circle to saddle points in 
the case.   The   cross   (+)    corresponds to the minimum  
     points and the cross (×) to the saddle point when, and. 
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In the new circumstances, the effective potential 
function  has 
two parameters:  and . As before, we looked for the 
extrema of the effective potential function. As expected, in 
this case the relative minimum belonging to the z-axis 
disappears. Also foreseeable, for low values of , an 
absolute minim exists near the  line as Fig. 5 
shows. 

Surprisingly, starting at some value of  depending on 
the  parameter, a relative minimum appears positioned 
in the opposite side of the  plane, as near the z-axis 
as the first one. For instance, at , the relative 
minimum appears for values of  greater than 0.12 
approximately. 

Figure 5 shows the location of the extrema in the 
effective potential for two values of the  at various 
values of the  parameter. So, if we chose for instance 

, and , the function would have an 
absolute minimum at ( ), a 
relative minimum at ( ), and a 
saddle point at ( ). 

The plot in Fig. 5 reveals that for  the  
function has only one absolute minimum near the  
line. 

If, for instance, in the numeric integration of the 
system (28), we chose for the initial position of the particle 
the minimum of the effective potential function, 

, and , long-term bounded 
trajectories are obtained (see Fig. 6). This proves that these 
points belong to the stability domain of the hexapole trap 
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Fig. 6. Stable particle trajectories near the bottom of the 
effective potential function. The particle was launched 
from the bottom   of   the effective  potential function with     
                          pϕ = 0.0005, and c = 0.13. 
 
Fig. 6 shows that for the upper motion (near the 

absolute minimum of the effective potential function) 
extends almost along the  line.  

On the contrary, for the lower trajectory (near the 
relative minimum) extends over comparable domains in 
both directions  and . The two light-gray cross marks 
indicate the position of the minimum of the effective 

potential function from where the particle was launched in 
the simulation. 

 
 
7. Conclusions 
 
The motion stability in a hexapole rf trap under non 

null DC component was investigated. Generally, as for the 
octupole rf trap, the presence of a DC component weakens 
the motion stability in the hexapole rf trap. 

Mainly, two objectives were pursued in this analysis: 
(i) to find if, and under what conditions, stable motions are 
possible; (ii) what are the reasons for weakening the 
motion stability under non-zero DC component. 

Concerning the first question, we looked for the 
minima of the effective potential where we assumed that 
stable motions are possible. As the dedicated section 
proved, the answer is clearly yes for rectilinear motions. 
Also, the above assumption proves to be true for both 2D 
and 3D motions, as the numerical results show.  

The good agreement between theory and the numeric 
results for 1D motions has its two-fold importance: (a) it 
validates the theory of the effective potential, and (b) it 
attests the accuracy of the numeric methods used.  

As for the discrepancies, there should be a better 
theory that expects to be discovered. 

In the numerical analysis of the 2D motions, long-
term bounded motions were recorded in the vicinity of the 
minima of the effective potential. Unlike the null DC 
component case, a particle launched near the bottom of the 
effective potential exhibits a residual motion whose 
amplitude increases with . Also, since it is a minimax for 
the effective potential function, the origin is not a stable 
equilibrium point for the rf hexapole trap. Moreover, the 
motions in which the ion approaches the trap center with 
very low velocity exhibit chaotic dynamics. In the case of 
rectilinear motions: the closer the limit of the trajectory to 
the trap center, the closer to zero the frequency of the slow 
motion. 

Regarding the 3D case, the effective potential 
function allows to consider the stability of motions with 
non null angular momentum with respect to the z-axis. As 
expected in such cases, the bottom of the effective 
potential function does not belong to the symmetry axis. 
Besides, it is found that, for relatively large values of c, the 
spatial stability domain is divided into two parts: one 
having the center near the cone  and another, on 
the opposite side of the  plane, and closer to the 
symmetry axis than the first one. 

As for the answer to the second question, we found 
that the deterioration of the motion stability is mainly 
produced by shifting the motion to spatial locations where 
the intensity of the driving field is larger. In these regions, 
even a small perturbation could become decisive. Also, the 
presence of multiple minima of the effective potential 
introduces more slow frequencies, and, consequently, 
more chances for the trapping environment to induce 
resonance phenomena on the particle motion. Even when 
these frequencies do not have the exact value of some slow 
frequency, when they are close enough, the resonance 
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phenomena take place increasing the kinetic energy of the 
particle. 

The theory predicted all the major features of the 
motion studied, but fails in giving the exact position of the 
minima of the effective potential (23), and the exact value 
of the frequency of the slow motion (26). Both observed 
shifts increase with . Unlike the  case, for  the 
shift of  increases with the kinetic energy also (22). 

Due to these observations, we may conclude that 
under DC component the validity of the adiabatic theory 
extends much further than for the null DC case. 

In contrast to the quadrupole (Paul) trap for nonlinear 
rf traps of higher order (hexapole, octupole, and so on) the 
frequency of the slow motion depends on the kinetic 
energy of the particle. Moreover, the number of slow 
frequencies increases with the order of the trap. 

As compared to the octupole trap, the DC component 
seems to have a smaller influence on the stability of the 
hexapole rf trap. 
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